

WP5 update - June 2025 **Quality and safety**

📦 Deliverables

- · D5.1 Decontamination equipment and technologies (design and specifications) ✓
- D5.2 Post use functional properties of RPP with materials database 📅 August 2025
- · D5.3 Report on migration modelling, contaminants abs., barrier evaluations **77** August 2025
- · D5.4 Database of microplastic properties and relationship modelling exterior February 2026
- D5.5 Pilot line for cleaning of reusable packaging


Objectives

- · Development of the approach for risk assessment and management of reusable packaging after use.
- · Assessment of the functional properties and safety of reusable packaging after multiple cycles of reuse/cleaning.
- · Quantification of microplastic release throughout the life cycle.
- · Optimisation and integration of cleaning technologies in a cleaning pilot line which will demonstrate the capacity of packaging developed in WP3 and tested in WP5 to remain functional after at least 20 cycles of reuse up to 300 cycles.

Key Activities

- · 1st design of decontamination equipment based on specifications from T1.3.
- · Safety / Successful decontamination of RPP after use with the target of 100 ppm (contamination level to be achieved after washing and disinfection stages).
- · Identification of mitigation measures for microplastics, particularly regarding exposure of RPP and cleaning water.
- Cleaning Pilot Line engineering and commissioning

? Key Research Questions

- · What are the factors influencing the ageing of reusable packaging over the course of different use cycles?
- \cdot Is it possible to use new technologies to detect the most dangerous substances, especially on washing lines?
- · How can we safely manage the misuse and use of detergents?

Intermediary results

Task 1

- \cdot Used packaging has been collected from each use case to characterize the organic residues and the microbiological contamination.
- ·Based on these results, specific cleaning and disinfection procedures have been developed and tested by visual inspection and against microbial contamination by microbiological analysis for each use-case.
- •The best protocol has been selected to completely remove organic material and achieve a reduction of microbial contamination of more than 90%.

General proposed protocol:

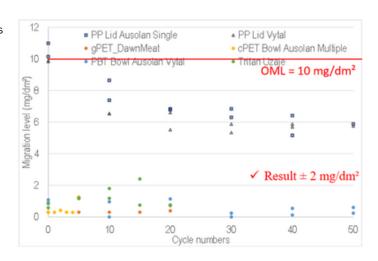
Phase	Products	Dose (%w/w)	T2 (2C)	Time (s)
1	Betelene DB30	2.0	60	60
2	Mida SAN 328 EC	3.0	60	60
3	Dectocide CDB + Mida AF 622 EM	5.0 + 0.2	60	120
4	Relavit Rinse H	0.0002	60	20

Task 2

Aging tests based on environment : Thermal / Immersed (H20) / Chemically Immersed (1%v detergent in H20)

It aims to evaluate the evolution of raw materials in different aging environment that can be encountered during its usage.

Those evolutions will be compared to some materials aged by LNE in order to explain some of the degradation that could be seen.



Task 3

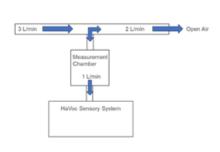
- 1- Aging test: accelerated and worst-case conditions
- · Simulant: Oil + Sudan III at 0.1 g/L (for DawnMeat) and 0.5 g/L (for others)

Use-case	Materials	Contact with simulant (Oil + Sudan III)	Washing	Drying
Dawn Meat 20 cycles	PETg (tray)	3.02 h @ 65 °C at 0.1 g/L	Laboratory protocol (45 min up to	10 min @ 70°C
Ausolan single and Vytal	PBT (Bowl)	58.8 h @ 55°C at 0.5 g/L	50 °C) including pre-wash (cold), wash (50°C), rinse (cold) and final	
50 cycles	PPc (Lid: no simulant)	1.7 h @ 100°C no simulant		
Ausolan multiple	cPET (bowl and lid)	2h @ 175*C at 0.5 g/L	rinse (50°C)	
5 cycles			Getinge Lancer Detergent LLL	
Uzaje	Tritan	3.47h @ 90°C at 0.5 g/L	(NaOH base)	
20 cycles				

2- Overall migration tests on new and aged materials / packaging ·Simulant: isooctane ·Ratio 6 dm²/ 1kg

- 3- Migration modelling for determination of required residual concentrations in RPP for chemical safety :
- Worst-case scenarios
- Molecular weights ranging from 100 to 1000 g-mol-1
- Threshold determined based on the TTC approach for genotoxic substances (0.15 ppb for food application and 83 ppm for house-case products)

Maximum residual content (mg/kg) of substances in packaging after washing / decontamination step to be compliant with


threshold (0.15 ppb) derived by TTC substances Vytal_tray Vytal_lid Ausolans_tray Ausolans_lid Ausolanm_tray Ausolanm_lid Dawn Meat Asevi_bottle Asevi_cap Uzaje 1.4E-02 1.6E+03 1.7E+02 1.2E+03 4.1E-02 4.7E+00 6.5E+03 7.1E+02 1.4E+03 2.5E+03 6.7E+00 8.7E-02 1.4E+01 9.0E-01 6.5E-02 2.0E+04 2.2E+03 2.2E+03 4.3E+03 2.6E+02 M4 3.8E+01 5.4E+04 5.8E+03 7.0E+03 1.7E+01 1.8E-01 2.2E+00 1.3E-01 3.5E+03 7.0E+02 M5 3.6E-01 9.1E+01 5.1E+00 2.6E-01 1.3E+05 1.4E+04 5.4E+03 1.1E+04 4.2E+01 9.2E+01 7.0E-01 2.0E+02 1.1E+01 5.1E-01 2.9E+05 3.1E+04 8.1E+03 1.6E+04 M7 1.4E+00 4.2E+02 2.3E+01 9.8E-01 6.0E+05 2.4E+04 1.9E+02 1.2E+06 1.3E+05 3.8E+02 8.4E+02 1.8E+00 1.7E+04 7.4E+02 4.7E+00 1.6E+03 8.6E+01 3.4E+00 2.3E+06 2.5E+05 2.3E+04 4.7E+04 1.6E+02 3.0E+03 1.4E+03 3.1E+04

- → Invalidation of the initial indicator of 100 ppm residual concentration
- → Case-by-case indicator for residual content

- System for on-site measurements completed
- Proof of concept measurements are planned, and method is developed

Impact & Outcomes

This WP will contribute to the work of European standardization bodies by sharing lessons learned from the plastic packaging reuse project".

FOLLOW OUR PROGRESS

IPC - The Industrial Technical Centre for Plastics and Composites Florence Isnard Project coordinator f lorence.isnard@ct-ipc.com / +33 (0)4 26 61 90 87 2 rue Pierre-et-Marie-Curie 01100 Bellignat - France

www.ct-ipc.com

CONTACTS

ACTIA - The French Network
for Food Technology Institutes
Gemma Cornuau
Dissemination leader
g.cornuau@actia-asso.eu
+33 (0)6 18 69 52 13
149 rue de Bercy - 75012 Paris - France
www.actia-asso.eu

ACTIA

PARTNERS

